RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.Sc. SECOND SEMESTER (January – June) 2015 Mid-Semester Examination, March 2015

Date : 18/03/2015

INDUSTRIAL CHEMISTRY (Honours)

 $\label{eq:paper:II} \mbox{Full Marks}: 50$

[Use a separate answer book for each group] <u>Group - A</u>

An	swei	r <u>any two</u> questions:	$[2\times5]$
1.	a)b)	Calculate the energy of one photon of light of wavelength 2500Å. Will it be able to dissociate a bond in diatomic molecule which absorbs this photon and have bond energy equal to 95 kcal per mole. Why chain inhibition step is occurred in HBr chain reaction?	[3] [2]
2.	a) b)	A certain system absorbs 3×10^8 quanta of light/sec. On irradiation for 20 min, $0\cdot03$ mole of the reactant was found to have reacted. Calculate the quantum yield for the process. Comment on the result. Explain: HCl and HBr chain reactions are occurred but HI not.	[2·5] [2·5]
3.	explain its role in Jablonski diagram.		
4.	-	$2 \xrightarrow{h\nu} 2Cl;$ $CO+Cl \xrightarrow{k_2} COCl;$ $COCl \xrightarrow{k_3} CO+Cl$	
	CC	$OCl + Cl_2 \xrightarrow{k_4} COCl_2 + Cl; COCl + Cl \xrightarrow{k_5} CO + Cl_2$	
		plying steady state approximations calculate the concentration of Cl.	[5]
$\underline{Group - B}$			
Answer any three questions:			
An	swei	r <u>any three</u> questions:	[3×5]
An 5.	swei a)	write down the IUPAC names for the following compounds:	[3×5]
			[3×5]
		Write down the IUPAC names for the following compounds:	[3×5]
		Write down the IUPAC names for the following compounds : i) $K_4[Ni(CN)_4]$	
	a)	Write down the IUPAC names for the following compounds: i) K ₄ [Ni(CN) ₄] ii) [CoCl(NO ₂)(NH ₃) ₄]Cl	[2]
	a) b)	Write down the IUPAC names for the following compounds: i) $K_4[Ni(CN)_4]$ ii) $[CoCl(NO_2)(NH_3)_4]Cl$ Write down the structures for all the isomers of $[Co(en)_2Cl_2]^+$ ion.	[2] [2]
5.	a)b)c)	Write down the IUPAC names for the following compounds: i) $K_4[Ni(CN)_4]$ ii) $[CoCl(NO_2)(NH_3)_4]Cl$ Write down the structures for all the isomers of $[Co(en)_2Cl_2]^+$ ion. What do you mean by fac– and mer– isomers? Only Cds is precipitated when H_2S is passed through an ammoniacal solution containing Cu^{2+} ,	[2] [2] [1]
5.	a)b)c)a)b)a)	Write down the IUPAC names for the following compounds: i) $K_4[Ni(CN)_4]$ ii) $[CoCl(NO_2)(NH_3)_4]Cl$ Write down the structures for all the isomers of $[Co(en)_2Cl_2]^+$ ion. What do you mean by fac– and mer– isomers? Only Cds is precipitated when H_2S is passed through an ammoniacal solution containing Cu^{2+} , Cd^{2+} and excess CN^- ions. Explain why? N_2H_4 cannot behave as a didentate ligand to a single metal ion. Explain. Indicate the donor points of the hexadentate ligand edta ⁴⁻ ion. Can it behave as a flexidentate ligand? Give such an example.	[2] [2] [1]
 5. 6. 	a)b)c)a)b)	Write down the IUPAC names for the following compounds: i) $K_4[Ni(CN)_4]$ ii) $[CoCl(NO_2)(NH_3)_4]Cl$ Write down the structures for all the isomers of $[Co(en)_2Cl_2]^+$ ion. What do you mean by fac– and mer– isomers? Only Cds is precipitated when H_2S is passed through an ammoniacal solution containing Cu^{2+} , Cd^{2+} and excess CN^- ions. Explain why? N_2H_4 cannot behave as a didentate ligand to a single metal ion. Explain. Indicate the donor points of the hexadentate ligand edta ⁴⁻ ion. Can it behave as a flexidentate	[2] [2] [1] [3] [2]
 5. 6. 	a)b)c)a)b)a)	Write down the IUPAC names for the following compounds: i) $K_4[Ni(CN)_4]$ ii) $[CoCl(NO_2)(NH_3)_4]Cl$ Write down the structures for all the isomers of $[Co(en)_2Cl_2]^+$ ion. What do you mean by fac– and mer– isomers? Only Cds is precipitated when H_2S is passed through an ammoniacal solution containing Cu^{2+} , Cd^{2+} and excess CN^- ions. Explain why? N_2H_4 cannot behave as a didentate ligand to a single metal ion. Explain. Indicate the donor points of the hexadentate ligand edta ⁴⁻ ion. Can it behave as a flexidentate ligand? Give such an example. What do you mean by linkage isomerism? Illustrate the phenomenon using examples of	[2] [2] [1] [3] [2]

- a) What do you mean by innermetallic complex of first order?
 - b) State how hardness of water can be estimated using edta salt.

[3]

[2]

Group – C

Answer <u>any two</u> questions:

 $[2\times5]$

[2]

- 15. a) Chloral shows unexpectedly high rate of hydration —explain.
 - [3]
 - b) Carry out the following conversion with proper mechnaism.

$$H_{3}C$$
 COH OH CH_{3} COH

- Thio-acetals are quite stable in aqueous acidic solution compared to acetals. —Explain. [2]
 - b) How will you do the following reaction? (Give mechanism)

[3]

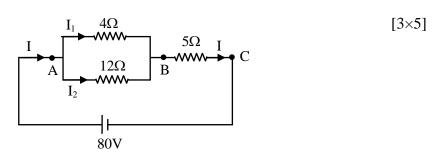
$$\stackrel{\text{O}}{\longrightarrow} \stackrel{\text{CH}_3}{\longrightarrow}$$

- 17. a) Why acetaldehyde does not response to Cannizzaro reaction? [2]
 - b) Write down the product with proper mechanism.

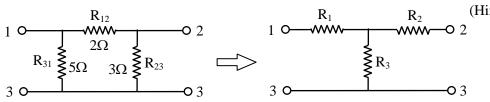
[3]

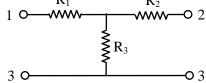
18. Carry out the following conversions with proper mechanisms.

a)
$$H_3C \longrightarrow H_3C \longrightarrow H_3C \searrow C = 0$$
 [2]

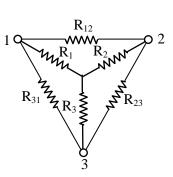

b)
$$CO_2Me$$
 $i) Na, Xylene, TMSCl$ $ii) H_3O^+$ O

Group - D

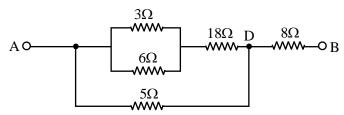

Answer any three questions:

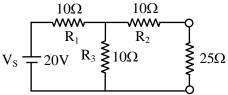

(\textstyle network)

- 10. In the figure shown below find
 - The voltage drop in each resistor
 - b) The current in each resistor



11. Using Δ to \bigwedge Transformations, convert the ' π ' network (Δ network) to its 'T' equivalent




(2)

- 12. State **any five** of the following:
 - a) Super position Theorem
 - b) Kirchhoff's Current Law
 - c) Kirchhoff's voltage Law
 - d) Norton's Theorem
 - e) Maximum Power Transfer Theorem
 - f) Thevenin's Theorem
- 13. Calculate the effective resistance of the following combination of resistance and voltage drop across each resistance when a voltage of 60V –d.c is connected across points A & B.

14. Use Thevenin's theorem to determine the current through and the voltage across the 25Ω resistor in the figure below:

____×___